顯示具有 趣味數學 標籤的文章。 顯示所有文章
顯示具有 趣味數學 標籤的文章。 顯示所有文章

數學愛情童話(Fairy Tale of Cardioid)

>> 2010年5月22日 星期六

很久很久以前,鹿兒國有一位數學家,他的名字叫碌碌仔,他很喜歡數學,時常思考數學問題。
有一天,碌碌仔在草原上一邊散步一邊思考,不知不覺走進了獅子國。
這時候,有一位美麗的少女經過,她對碌碌仔非常好奇,於是上前問他︰「你從哪來的?你是做什麼的?」
碌碌仔回答說︰「我是從鹿兒國來的,我是一位數學家。」
這名少女就是森森公主,她熱衷於數學。當她聽到碌碌仔的身份之後,感到相當大的興趣,於是把碌碌仔邀請回宮。每天都一起研究數學。
後來,他們互相愛慕,漸生情愫。然而這件事傳到國王耳中,讓國王相當憤怒!下令將碌碌仔放逐回鹿兒國,並將森森公主軟禁。

碌碌仔回到鹿兒國後不停地寫情信到獅子國給森森公主。可惜全部情信都被國王給攔截沒收。所以森森公主一直沒收到碌碌仔的信。碌碌仔因為太掛念森森公主,沒多久就染上了相思病, 躺在床上奄奄一息。

在碌碌仔病得快要死去的時候,他靈機一動,寄出了一封特別的信。 這封信的內容只有短短的一行:

r = a ( 1 - sin θ ) 

國王攔截到這封信之後,發現並不是一如往常的情話。國王當然看不懂這項方程式,於是找來城裡所有科學家來研究。可是科學家只明白用笛卡兒座標它是一條波浪曲線:
卻沒有人能夠解開這方程式背後是什麼意思。

國王心想:反正碌碌仔就快要快死了,而且公主被軟禁時都悶悶不樂的。所以,就把信交給森森公主。

當森森公主收到這封信時,雀躍無比,她很高與她的愛人還是在想念她的。她立刻動手研究這行字的秘密。沒多久就解出來了,這方程式就是碌碌仔和森森公主之間的秘密方程式:「心心線」(Cardioid)。

Cardioid(心心線)其實還是由兩個ring(戒指)編織成的locus(軌跡),代表二人同心,形影不離,心心相印。


看到這裡,森森公主當然明白碌碌仔求婚的意思。於是向國王解釋當中的意思,而國王亦被碌碌仔的數學才華感動,准許森森公主和碌碌仔結婚。碌碌仔得知後快樂得不藥而癒,從此兩人一起過著幸福快樂的生活。

傳說,這個秘密的方程式一直保留在森綠創意坊一個神秘的地方,你們可以找找看呢 =)

Read more...

幾何學小遊戲 - Geosketch

>> 2009年9月28日 星期一

Geosketch 是一個非常簡單,但卻無比迷人的幾何學小遊戲。在畫面上你有一個不斷在旋轉的三截棍,下方則有三個欄位可以填入數字,從左到右分別對應到三根「棍子」的旋轉速率。數字愈大表示轉得愈快,也可以是負的(表示反方向轉)或小數。把三截棍移到畫面任何一處,按下左鍵不放,就可以看它自行開始畫畫啦!按空白鍵可以清除畫面。

雖然填進去的數字沒有上限,但實際上它是以 360 為周期的,因此 1,1,1 畫出來的圖形,會和 361,361,361 或 721,721,721 一樣。理論上三個數字都一樣的時候,所有的點集合而成的圖應該是正圓,但因為它的程式寫法是算出點的位置後從上一個點畫一條線連過來,因此數字大的時候取點會愈來愈寬,導致圖形變成多邊形而不是圓形。



除了這些之外,Geosketch 還可以畫出什麼圖型來,就要靠自已去嘗試了。

Read more...

韓信點兵 - 中國剩餘定理

>> 2009年8月30日 星期日

相傳漢高祖劉邦,欲擒韓信,但不知其統御兵士多少,恐有變數,故試探問道︰「卿有兵何?」
那知韓信巧妙地回答︰「兵不知數,三三數之剩二,五五數之剩三,七七數之剩二。」
劉邦不懂得答案,問請教於張良。張良正在心中緊張地搬運「籌策」計算看,滿臉迷惑,低聲而惶恐的回答:「兵數無法算,不可數!」
這位以「籌策之術」著名當代,號稱「運籌帷幄之中,決勝千里之外」的張良,竟然也如此回答。大漢皇帝劉邦大吃一驚,一下子酒全化為冷汗,酒全醒了。
這個問題俗稱為「韓信點兵」,大約在三國到魏晉南北朝之間(公元280 ~ 473年)有一本數學古書名叫「孫子算經」就已有這個問題的解:
「三三數之賸二,置一百四十,五五數之賸三,置六十三,七七數之賸二,置三十,並之,得二百三十三,以二百一十減之,即得。凡三三數之賸一,則置七十,五五數之賸一,則置二十一,七七數之賸一,則置十五,即得。」
哈哈,原來當時韓信手上最少只有二十三人就把劉邦嚇怕了。
孫子算經的解法其實也是現今數論證明的內涵,因為其解法遠在一千五百年前就已經為中國人發現,故名中國剩餘定理。它是整數論裡一個非常重要的法則。

Read more...

無限多項,其和卻是有限

>> 2009年4月23日 星期四

如果有對你對你說把無窮無限多項的級數加起來的和是有限數,你相信嗎。

這種現象,初步看來似乎自相矛盾,但仔細想一想,就會發現非常合理,而且比比皆是。
例如: 0.3333333....  = 3/10 + 3/100 + 3/1000 + ....


Read more...

甜甜圈=咖啡杯?

>> 2009年1月2日 星期五

如果小明對你說︰『甜甜圈和咖啡杯是一樣的…』 你會有什麼反應呢?

答案是: 小明是拓撲學家(topologist) =P, 因爲數學家John L. Kelley曾說:
拓撲學家是不知道甜甜圈和咖啡杯的分別的人。
看看下圖你就會明白了:

Read more...

概率的遊戲

>> 2007年8月15日 星期三

在袋中有三張卡:

  • 一張兩面都是白色
  • 一張兩面都是黑色
  • 一張兩一面是白色, 一面是黑色
你抽一張卡放在桌子上, 朝上的那面是黑色.

用你的直覺估計朝下那面是黑色的概率是?

答案

Read more...

投針試驗:當圓周率計算遇上機率論

>> 2007年4月10日 星期二

計算圓周率一直是令人著迷的議題,從古埃及至今,無數專家學者乃至業餘數學家前仆後繼地投入,1777 年,Georges-Louis Leclerc,Comte de Buffon (1707—1788) 提出嶄新的途徑,將圓周率這等幾何問題出發的計算,巧妙地以機率統計原理來表示,自此,開創使用隨機數值處理典型數學表示的先河,我們就來看看傳奇性的 Buffon 投針試驗。

法國數學家、科學家、《自然史》作者,也是風格家的 Comte de Buffon 在 1777 年某日,邀請賓客齊聚大廳,共襄盛舉一次試驗活動。古稀之年的 Buffon 鋪好一張白紙,其上預先畫好了一條條等距的平行線,接著取出一大把質量均等、長度為平行線間距一半的小針,待賓客就座後,Buffon 發言道:

「煩請各位將這些小針一根一根扔往白紙上,並且告知扔下的針是否與紙上平行線相交」

客隨主意,雖摸不著頭緒,但也一個個加入了試驗的行列。一把小針扔完了,把它撿起來又扔,而 Buffon 則在一旁不停地記數著,忙碌了將近一個鐘頭。最後,Buffon 高聲宣佈:
「各位賓客,依據我的紀錄,剛才的投針結果,共投針 2212 次,其中與平行線相交有 704 次。而總數 2212 與相交數 704 的比值為 3.142。」

說到這裡,Buffon 故作停頓,神秘張望賓客,接著說:
「這就是圓周率π的近似值!」

Buffon 利用平凡不過的除法,計算出圓周率的近似值,並宣稱投針的數目越多,圓周率的近似值將會越精準,這就是數學史上著名的 Buffon 投針問題,記載於其著作《機率算術試驗》(1777 年),此外,Buffon 也試著將機率應用於審判場合,比方說,若能對每個審判員規定某個足以理解真相或說出真相機會的數值,即可算出法庭作出正確判決的機會,換言之,就是「審判的概率」(Probabilite des jugements)。

圓周率π在這種看似雜亂的場合出現,實在出乎意料。一個直觀的理解途徑可透過物理上的對應,取一根鐵絲,將其彎成一個圓圈,適度剪裁使其直徑恰等於平行線間距離 d。於是乎,對於這個圓圈來說,無論如何扔下,都將和平行線有兩個交點。也就是說,若圓圈扔下的次數為 n,那麼,相交的交點總數必為 2n。接著,我們展開物理的形變,將圓圈拉開、拉直,這樣就成為長度為 πd 的鐵絲,再將這條鐵絲扔下,與平行線相交的情況就複雜許多,由於 1 < π <>πd : (1/2)d ≈ 2n : m
這也是 Buffon 投針試驗中所作的參數配置,約分後可得漂亮的式子:
π ≈ n / m


在古典數學中,求圓周率之值是幾何問題,而 Buffon 卻以此拍案叫絕的方式,以機率方法打通兩個看似風馬牛不相及的領域,成為幾何概率的典型例子。

近代科學的發展下,原本壁壘分明的個別人文、科學、哲學思想領域走向空前的大融通,匯流而成當代種種巨大變革,一如 Buffon 首次打破機率與幾何學的藩籬。數學領域的變遷也受到這等啟蒙,1904 年,R·Chartres 甚至提出另一種表示法:若寫下任意兩個整數,測這兩者互質的機率為 6 / π^2。

經過幾百年的演繹與探討,Buffon 投針試驗逐漸演化為一種數值方法的前身:「蒙地卡羅方法」(Monte Carlo method),也就是透過利用亂數取樣 (random sampling) 模擬來解決數學問題。第二次世界大戰期間,Monte Carlo 方法被系統性地應用於科學研究中,誕生了 MANIAC (Mathematical Analyzer, Numerical Integrator and Computer),而 Stanislaw Ulam、John von Neumann、Nicholas Metropolis、Enrico Fermi 等人發展法一種基於樣本統計的方法,來解決關於在原子彈設計中,中子隨機擴散問題和 Schrodinger 等式的特徵值估計問題。該方法的原理最初是 Stanislaw Ulam 闡述的,後來由 John von Neumann 深入研究,於 1949 年發表一篇名為 "The Monte Carlo method" 的論文而聞名,當然,到了進入電腦時代,這個方法才得以由原本手動產生亂數來解決問題,變成實際性的數值方法。

Monte Carlo 方法是由 Nicholas Metropolis 所命名,取自其亂數機率有如賭博一般,而恰似北非最西側的摩洛哥首都 Monte Carlo,也就是知名賭城,種種奇豔動人的賭場生活寫照。所有具有隨機效應的過程,均可能以 Monte Carlo 方法大量模擬單一事件,並藉由統計上平均值,獲得某設定條件下實際最可能測量值,更廣泛來說,自然界裏的布朗運動、電波的噪音、基因的突變、交通即時路況等等,無處不含有隨機的變化,均有可適用的場合。

參考資料:
Wikipedia: 布豐投針問題

Read more...

  © Free Blogger Templates Joy by Ourblogtemplates.com 2008

Back to TOP